Human RAD9 checkpoint control/proapoptotic protein can activate transcription of p21.

نویسندگان

  • Yuxin Yin
  • Aiping Zhu
  • Yan J Jin
  • Yu-Xin Liu
  • Xia Zhang
  • Kevin M Hopkins
  • Howard B Lieberman
چکیده

When human cells incur DNA damage, two fundamental responses can follow, cell cycle arrest or apoptosis. Human RAD9 (hRAD9) and p53 function in both processes, but the mechanistic relationship between their activities is unknown. p53 mediates checkpoint control at G(1) by transcriptional regulation of p21. In this report, we show that hRAD9, like p53, can also regulate p21 at the transcriptional level. We demonstrate that overexpression of hRAD9 leads to increased p21 RNA and encoded protein levels. The promoter region of p21 fused to a luciferase reporter can be transactivated by either hRAD9 or p53, indicating that hRAD9 regulates the p21 promoter for transcriptional control of expression. Using an electrophoretic mobility-shift assay, we show that hRAD9 specifically binds to a p53-consensus DNA-binding sequence in the p21 promoter. Microarray screening coupled with Northern analysis reveals that hRAD9 regulates the abundance of other messages in addition to p21. Our data reveal a previously undescribed mechanism for regulation of p21 and demonstrate that hRAD9 can control gene transcription. We suggest that hRAD9 and p53 co-regulate p21 to direct cell cycle progression by similar molecular mechanisms. Furthermore, hRAD9 might regulate other cellular processes as well by modulating transcription of multiple down-stream target genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9–Rad9 interaction after DNA damage

The Saccharomyces cerevisiae checkpoint protein Rad9 is required for transient cell-cycle arrest and transcriptional induction of DNA-repair genes in response to DNA damage [1]. It contains a carboxyterminal tandem repeat of the BRCT (BRCA1 carboxyl terminus) motif, a motif that is also found in many proteins involved in various aspects of DNA repair, recombination and checkpoint control [2][3]...

متن کامل

The CDK-PLK1 axis targets the DNA damage checkpoint sensor protein RAD9 to promote cell proliferation and tolerance to genotoxic stress

Genotoxic stress causes proliferating cells to activate the DNA damage checkpoint, to assist DNA damage recovery by slowing cell cycle progression. Thus, to drive proliferation, cells must tolerate DNA damage and suppress the checkpoint response. However, the mechanism underlying this negative regulation of checkpoint activation is still elusive. We show that human Cyclin-Dependent-Kinases (CDK...

متن کامل

Rad9B responds to nucleolar stress through ATR and JNK signalling, and delays the G1-S transition.

The complex formed by Rad9, Rad1 and Hus1 (9-1-1) protects against genomic instability by activating DNA damage checkpoint and DNA damage repair pathways, mainly in response to replication fork collapse and UV lesions. Here we compare the role of Rad9A (also known as Rad9) with the human paralogue Rad9B. Unlike Rad9A, overexpression of Rad9B delays cells in G1 phase. Moreover, Rad9B migrates to...

متن کامل

Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1.

To gain insight into the function and organization of proteins assembled on the DNA in response to genotoxic insult we investigated the phosphorylation of the Schizosaccharomyces pombe PCNA-like checkpoint protein Rad9. C-terminal T412/S423 phosphorylation of Rad9 by Rad3(ATR) occurs in S phase without replication stress. Rad3(ATR) and Tel1(ATM) phosphorylate these same residues, plus additiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 24  شماره 

صفحات  -

تاریخ انتشار 2004